当前位置 首页 人才队伍
  • 姓名: 黄森
  • 性别: 男
  • 职称: 研究员
  • 职务: 
  • 学历: 博士
  • 电话: 82995587
  • 传真: +86-10-62021601
  • 电子邮件: huangsen@ime.ac.cn
  • 所属部门: 高频高压器件与集成研发中心
  • 通讯地址: 北京市朝阳区北土城西路3号

    简  历:

  • 教育背景 

    2000-2004:大连理工大学物理系 电子科学技术专业, 学士 

    2004-2009:北京大学物理学院 凝聚态物理专业, 博士

    工作简历 

    2009-2012:香港科技大学电子及计算机工程学系 博士后 

    2012-2017:中科院微电子研究所 副研究员 

    2017至今:中科院微电子研究所 研究员

    社会任职:

    研究方向:

  • 高性能GaN基电力电子和射频微波器件; 

    SiGaN智能功率集成电路; 

    III族氮化物半导体电子器件的先进制备工艺,表征技术及器件物理

    承担科研项目情况:

  • 1. 国家优秀青年科学基金项目,61822407GaN基功率电子器件,2019-2021130万元,项目负责人。 

    2. 中科院前沿科学重点研究项目,QYZDB-SSW-JSC012GaN基功率器件与界面态物理,2016-2021250万元,项目负责人。 

    3. 国家自然科学基金面上项目,61474138,基于极化电荷补偿界面态钝化理论的GaN基功率开关可靠性及增强技术研究,2015-201875万元,项目负责人。 

    4. 中科院青年创新促进会项目,2016-201980万元,项目负责人。 

    代表论著:

  • 长期从事高性能GaN基功率电子器件和物理研究,在新结构器件设计,表/界面态物理,增强型技术,以及CMOS兼容SiGaN制造工艺等方面取得一些较有国际影响力的创新成果。迄今在IEEE EDL/APL等电子器件知名期刊以及IEDMISPSD等微电子领域著名会议上发表论文70余篇,SCI他引700余次。 

      

    1.  R. Zhao, S. Huang*, et al., “Interface charge engineering in down-scaled AlGaN (<6 nm)/GaN heterostructure for fabrication of GaN-based power HEMTs and MIS-HEMTs,” Applied Physics Letters, vol. 116, no. 10, p. 103502, Mar. 2020. 

    2.  S. Huang, et al., “Capture and emission mechanisms of defect states at interface between nitride semiconductor and gate oxides in GaN-based metal-oxide-semiconductor power transistors,” Journal of Applied Physics, vol. 126, no. 16, p. 164505, Oct. 2019. 

    3.  S. Huang, et al., “Monolithic integration of E/D-mode GaN MIS-HEMTs on ultrathin-barrier AlGaN/GaN heterostructure on Si substrates,” Applied Physics Express, vol. 12, no. 2, p. 024001, Feb. 2019. 

    4.  Y. Zhang, K. Wei, S. Huang*, et al., “High-Temperature-Recessed Millimeter-Wave AlGaN/GaN HEMTs With 42.8% Power-Added-Efficiency at 35 GHz,” IEEE Electron Device Letters, vol. 39, no. 5, pp. 727–730, May 2018. 

    5.  S. Huang, et al., “Ultrathin-Barrier AlGaN/GaN Heterostructure: A Recess-Free Technology for Manufacturing High-Performance GaN-on-Si Power Devices,” IEEE Transactions on Electron Devices, vol. 65, no. 1, pp. 207–214, Jan. 2018. 

    6.  X. Liu, X. Wang*, Y. Zhang, K. Wei, Y. Zheng, X. Kang, H. Jiang, J. Li, W. Wang, X. Wu, X. Wang, and S. Huang*, “Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiNx Grown by Low-Pressure Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces, vol. 10, no. 25, pp. 21721–21729, Jun. 2018. 

    7.  S. Huang, et al., “Device physics towards high performance GaN-based power electronics,” 中国科学:物理学 天文学 , 2016年,第46卷,第10: 107307. 

    8.  S. Huang, et al., “High Uniformity Normally-OFF GaN MIS-HEMTs Fabricated on Ultra-Thin-Barrier AlGaN/GaN Heterostructure,” IEEE Electron Device Letters, vol. 37, no. 12, pp. 1617–1620, Dec. 2016. 

    9.  Q. Bao, S. Huang*, et al., “Effect of interface and bulk traps on the C–V characterization of a LPCVD-SiNx/AlGaN/GaN metal-insulator-semiconductor structure,” Semiconductor Science and Technology, vol. 31, no. 6, p. 065014, Jun. 2016. 

    10. Z. Liu, S. Huang*, et al., “Investigation of the interface between LPCVD-SiNx gate dielectric and III-nitride for AlGaN/GaN MIS-HEMTs,” Journal of Vacuum Science & Technology B, vol. 34, no. 4, p. 041202, Jul. 2016. 

    11. Y. Shi, S. Huang*, et al., “Normally OFF GaN-on-Si MIS-HEMTs Fabricated With LPCVD-SiNx Passivation and High-Temperature Gate Recess,” IEEE Transactions on Electron Devices, vol. 63, no. 2, pp. 614–619, Feb. 2016. 

    12. J. Zhang, S. Huang*, et al., “Mechanism of Ti/Al/Ti/W Au-free ohmic contacts to AlGaN/GaN heterostructures via pre-ohmic recess etching and low temperature annealing,” Appllied Physics Letters, vol. 107, no. 26, p. 262109, Dec. 2015. 

    13. S. Huang, et al., “High RF Performance Enhancement-Mode Al2O3/AlGaN/GaN MIS-HEMTs Fabricated With High-Temperature Gate-Recess Technique,” IEEE Electron Device Letters, vol. 36, no. 8, pp. 754–756, Aug. 2015. 

    14. S. Huang, et al., “O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors,” Appllied Physics Letters, vol. 106, no. 3, p. 033507, Jan. 2015. 

    15. S. Huang, et al., “High-temperature low-damage gate recess technique and ozone-assisted ALD-grown Al2O3 gate dielectric for high-performance normally-off GaN MIS-HEMTs,” in 2014 IEEE International Electron Devices Meeting, 2014, p. 17.4.1-17.4.4. 

    16. S. Huang, et al., “High-fmax High Johnson’s Figure-of-Merit 0.2-um Gate AlGaN/GaN HEMTs on Silicon Substrate With AlN/SiNx passivation,” IEEE Electron Device Letters, vol. 35, no. 3, pp. 315–317, Mar. 2014. 

    17. S. Huang, et al., “Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges,” IEEE Electron Device Letters, vol. 34, no. 2, pp. 193–195, Feb. 2013. 

    18. S. Huang, et al., “Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film,” IEEE Electron Device Letters, vol. 33, no. 4, pp. 516–518, 2012. 

    19. S. Huang, et al., “Threshold Voltage Instability in Al2O3/GaN/AlGaN/GaN Metal–Insulator–Semiconductor High-Electron Mobility Transistors,” Japanese Journal of Applied Physics, vol. 50, no. 11, p. 110202, Oct. 2011. 

    20. S. Huang, et al., “Effects of the fluorine plasma treatment on the surface potential and Schottky barrier height of AlxGa1?xN/GaN heterostructures,” Appllied Physics Letters, vol. 96, no. 23, p. 233510, Jun. 2010. 

    21. S. Huang, et al., “Study of the leakage current mechanism in Schottky contacts to Al0.25Ga 0.75N/GaN heterostructures with AlN interlayers,” Semiconductor Science and Technology, vol. 24, no. 5, p. 055005, May 2009. 

    22. S. Huang, et al., “Current transport mechanism of Au∕Ni∕GaN Schottky diodes at high temperatures,” Appllied Physics Letters, vol. 91, no. 7, p. 072109, Aug. 2007. 

    专利申请:

  • 1.  Sen Huang, et al., “Semiconductor Device and Method for Manufacturing the Same,” Application date: 2016.10.25, USA, US 15/333, 674. 

    2.  Sen Huang, et al., GaN-based Power Electronic Device and Method for Manufacturing the Same,” 授权专利号:US10,062,775 B2,公告日:2018828日。 

    3.  黄森等,“一种GaN基功率电子器件及其制备方法”,授权日:201921日,中国,专利号:ZL201610265883.8 

    4.  黄森等,“增强型GaN基高电子迁移率晶体管及其制备方法”, 授权日:2019315日,中国,专利号:ZL201610331114.3 

    5.  黄森等,“一种GaN基增强型电子器件的材料结构”,专利申请日:20161130日,中国,申请号:201611087180.7 

    6.  黄森等,“增强型GaN基功率晶体管器件及其制作方法”,专利申请日:20161215日,中国,申请号:201611161073.4 

    7.  黄森等,“GaNHEMT器件栅极结构”,专利申请日:2017118日,中国,申请号:201710037479.X 

    8.  黄森等,“GaN基单片功率逆变器及其制作方法”,专利申请日:2017117日,中国,申请号:201711081961.X 

    9.  黄森等,“GaN基超结型垂直功率晶体管及其制作方法”,专利申请日:2019314日,申请号:PCT/CN2019/078113 

    10. 黄森等,“P型沟道GaN基结构及电子器件”,专利申请日:201943日,申请号:201910265671.3 

    11. 黄森等,“基于氮化镓基增强型器件的探测器及其制作方法”,专利申请日:201988日,申请号:201910732534.6

    获奖及荣誉:

  • IEEE Senior Member;中国科学院青年创新促进会会员