当前位置 >> 首页 >> 学习园地
  • 【科技日报】自旋电子器件节能机制发现更多>>

    随着人工智能与大数据技术的飞速发展,传统电子技术正日益逼近其性能极限。当芯片上集成的元器件越来越多、越来越密时,其总功耗和发热量会急剧上升,而当元器件密度太高,散热跟不上时,就无法再通过增加元器件来提升性能,仿佛撞上了一堵由功耗和热量组成的无形之墙——“功耗墙”。如今,“功耗墙”已成为行业发展的关键瓶颈。新一代自旋电子器件在理论上具备高速、非易失等优势,与之相关的技术则被视为突破“功耗墙”的潜力技术。然而,自旋电子器件在迈向大规模应用的道路上,却遇到了写入电流和写入功耗过高的巨大挑战。“与传统电子学仅利用电子的‘电荷’属... 详细 >>

  • 研究获得锯齿型石墨烯纳米带中室温铁磁性的直接实验证据更多>>

    石墨烯作为独特的二维材料,其p轨道电子磁性与传统磁性材料中d/f轨道电子的局域磁性不同,这为探索纯碳基量子磁性开辟了新的研究方向。锯齿型石墨烯纳米带(zGNRs)因在费米能级附近可能具有独特的磁性电子态,被认为在自旋电子学器件领域具有潜力。然而,通过电输运方法探测zGNRs的磁性面临多重挑战。例如,自下而上组装的纳米带通常长度过短,难以进行可靠的器件制备。同时,zGNRs边界的高化学反应活性也可能导致不稳定性或不均匀掺杂。此外,在较窄的zGNRs中,边缘态的强反铁磁耦合会使得在电学上难以测量其磁性信号。这些因素阻碍了针对zGNRs磁性的直接探测。近日,... 详细 >>

  • 高速数据传输能力异质集成薄膜铌酸锂电光调制器研究取得进展更多>>

    光子回路的异质集成解决方案可以充分利用不同材料平台的优势。近日,中国科学院上海微系统与信息技术研究所研究员蔡艳、欧欣团队合作,通过“万能离子刀”剥离转移技术在六英寸图形化SiN晶圆上集成了高质量的铌酸锂薄膜,并通过晶圆级工艺制备出具备高速数据传输能力的异质集成薄膜铌酸锂电光调制器。在该异质集成方案中,氮化硅与薄膜铌酸锂形成混合波导,铌酸锂薄膜无需刻蚀加工,简化了工艺流程。研究团队设计并通过实验展示了一种可同时工作于O波段与C波段的、基于全流程晶圆级制造的高性能氮化硅-薄膜铌酸锂异质集成马赫曾德尔电光调制器。采用万能离子刀技... 详细 >>

  • 微电子所在RRAM存算一体芯片研究方面取得进展更多>>

    边缘端人工智能(AI)硬件凭借其低延迟、高能效和强隐私性等优势,得到广泛关注与应用。在功耗严格受限的边缘端部署AI硬件,不仅需要高能效以满足功耗约束,还需要高并行度以提升实时性能。基于阻变存储器(RRAM)的存算一体和近阈值计算作为两种高效能计算范式,有望在实现高能效、高并行的AI硬件中发挥关键作用。然而,受工艺波动的影响,这两种计算范式的规模与可扩展性仍面临挑战。此外,如何有效结合这两种范式以开发低功耗、高并行的AI硬件,目前仍缺乏深入研究。针对上述挑战,中国科学院微电子研究所集成电路制造技术全国重点实验室科研团队设计并... 详细 >>

  • 各向异性层状材料角分辨偏振拉曼光谱定量预测研究获进展更多>>

    ​近日,中国科学院半导体研究所谭平恒团队基于对各向异性层状材料黑磷(BP)、Td相二碲化钨(Td-WTe₂)的研究提出一项新理论,任意衬底上的各向异性层状材料,其角分辨偏振拉曼强度(ARPR)都可以通过该理论进行定量预测。该研究有助于深入理解各向异性层状材料的本征属性,解决其在偏振光电子器件中的应用难题。层状材料按照晶体的面内对称性分为各向同性层状材料(ILM)和各向异性层状材料(ALM),特定过程中,ILM也会转变为ALM,因此,ALM是层状材料中最为广泛的存在。ALM表现出偏振敏感的光学响应和各向异性物性,是偏振光探测器、场效应晶体管和热电器件的潜力材料。深... 详细 >>

  • 氮化镓基无源太赫兹相控阵机制研究获进展更多>>

    随着无线通信技术的发展,太赫兹波因超宽带、高定向性和高分辨率等优势,成为6G通信的重要频谱资源。然而,频率升高带来的路径损耗加剧和信号源输出功率降低等问题,使系统对高精度、低损耗、大视场的波束控制器件提出严苛要求。近日,中国科学院苏州纳米技术与纳米仿生研究所秦华团队提出并研制了基于氮化镓肖特基二极管(GaN SBD)的无源太赫兹相控阵芯片原型,其工作频率为0.32 THz,阵列规模为32×25。这一芯片利用GaN SBD的高速变容特性实现阵列天线谐振模式的动态调控,支持模拟和数字调相两种工作模式。在0至210°的连续相位调节范围内,平均插入损耗为5 dB,调... 详细 >>

更多科普知识>>

“曲线球”系统可绕障传输超高频信号

美国普林斯顿大学研究团队开发出一种创新“曲线球”系统,可高速稳定传递超高频信号。这一神经网络系统,...

混合芯片实现太赫兹波与光信号双向转换

瑞士洛桑联邦理工学院(EPFL)和美国哈佛大学科学家合作,研制出一款新型集成芯片,实现了太赫兹波与光信号...

“超表面”器件能集成光子量子操作

据最新一期《科学》杂志报道,美国哈佛大学研究人员开发出一种新型光学器件,即“超表面”,可在单一的...

反物质量子比特首次演示

欧洲核子研究中心(CERN)的BASE合作组23日在《自然》杂志上发表了一项突破性成果:首次让一个反质子在量子...

全球首个二维半金属材料获验证

德国于利希研究中心的研究人员研制出全球首个二维半金属材料并获实验证实。该材料是一种仅允许单一自旋...

王守觉:一生求新只为摆脱“洋拐棍”

改革开放后,国内曾一度热衷引进国外的先进科技成果,而忽视自主创新研发。在中国电子学会的一次年会上,半...

电子—光子—量子一体化芯片系统诞生

据最新一期《自然-电子学》杂志报道,美国波士顿大学、加州大学伯克利分校和西北大学团队联合,开发出全球...

反铁磁材料电信号实现可读可控

反铁磁材料因其潜在的高速信息处理能力,近年来受到科学界高度关注。但由于其自旋信号难以探测与控制,...

全自动机器人高速检测材料关键特性

美国麻省理工学院(MIT)团队开发出一种全自动机器人系统,可大幅加快对新型半导体材料的性能分析和测试速...

混合量子系统实现超精密传感

丹麦哥本哈根大学尼尔斯·玻尔研究所团队开发出新型可调量子传感技术——一种混合量子系统,能帮多种技术...

“热淬火”技术能切换量子材料导电状态

美国东北大学与布朗大学等机构科学家通过精确控制加热和冷却,即所谓的“热淬火”技术,让量子材料在导电...

低温下精准控制量子比特的芯片问世

量子计算机要真正实现大规模实用化,关键在于如何稳定、精准地控制海量量子比特。澳大利亚悉尼大学与新南...

石墨烯中首次演示量子自旋霍尔效应

荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为...

光学AI处理器可高效准确分类无线信号

据最新一期《科学进展》杂志报道,美国麻省理工学院团队开发出一种专为无线信号处理而设计的全新人工智...

微波技术将量子比特出错率降至千万...

英国牛津大学研究团队利用微波技术,将量子比特操控的错误率降至千万分之一,达到前所未有的水平。这项发...

世界首台非硅二维材料计算机问世

硅在支撑智能手机、电脑、电动汽车等产品的半导体技术中一直占据着王者地位,但美国宾夕法尼亚州立大学领...

最快量子随机数生成器面世

由沙特阿卜杜拉国王科技大学与阿卜杜勒·阿齐兹国王科技城科学家联合主导的研究团队,研发出迄今基于国...

气流驱动软体机器人问世

据最新一期《科学》杂志报道,荷兰原子与分子物理研究所团队制造了一款软体机器人,它没有人工智能芯片、...

首个速度达拍赫兹光电晶体管问世

在一项国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来...

郑理:破译硅基半导体“密钥”

2025年度中国青年五四奖章获得者郑理长期在“方寸之间找出路”。他是中国科学院上海微系统与信息技术研...